A Stable and Fast Algorithm for Updating the Singular Value Decomposition
نویسنده
چکیده
Let A 2 R mn be a matrix with known singular values and singular vectors, and let A 0 be the matrix obtained by appending a row to A. We present stable and fast algorithms for computing the singular values and the singular vectors of A 0 in O ? (m + n) min(m;n) log 2 2 oating point operations, where is the machine precision. Previous algorithms can be unstable and compute the singular values and the singular vectors of A 0 in O ? (m + n) min 2 (m;n) oating point operations.
منابع مشابه
Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملUpdating Singular Value Decomposition for Rank One Matrix Perturbation
An efficient Singular Value Decomposition (SVD) algorithm is an important tool for distributed and streaming computation in big data problems. It is observed that update of singular vectors of a rank-1 perturbed matrix is similar to a Cauchy matrix-vector product. With this observation, in this paper, we present an efficient method for updating Singular Value Decomposition of rank1 perturbed ma...
متن کاملA Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size
The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کامل